
CMSC 350 Project 4

The fourth programming project involves writing a program that behaves like the Java command

line compiler. Whenever we request that the Java compiler recompile a particular class, it not

only recompiles that class but every other class that depends upon it, directly or indirectly, and in

a particular order. To make the determination about which classes need recompilation, the Java

compiler maintains a directed graph of class dependencies. Any relationship in a UML class

diagram of a Java program such as inheritance relationships, composition relationships and

aggregations relationships indicate a class dependency.

The main class for this project should create the GUI shown below:

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI

generator.

Pressing the Build Directed Graph button should cause the specified input file that contains the

class dependency information to be read in and the directed graph represented by those

dependencies to be built. The input file associated with the above example is shown below:

ClassA ClassC ClassE

ClassB ClassD ClassG

ClassE ClassB ClassF ClassH

ClassI ClassC

Each line of this file specifies classes that have other classes that depend upon them. The first

line, for example, indicates that ClassA has two classes that depend upon it, ClassC and

ClassE. In the context of recompilation, it means when ClassA is recompiled, ClassC and

ClassE must be recompiled as well. Using graph terminology, the first name on each line is the

name of a vertex and the remaining are its associated adjacency list. Classes that have no

dependent classes need not appear at the beginning of a separate line. Notice, for example, that

ClassC is not the first name on any line of the file.

After pressing the Build Directed Graph button, one of following two messages should be

generated depending upon whether the specified file name could be opened:

Once the graph has been built, the name of a class to be recompiled can be specified and the

Topological Order button can be pressed. Provided a valid class name has been supplied, the list

of classes that need to be recompiled should be listed in the order they are to be recompiled in

the text area at the bottom of the window. An invalid class name should generate an appropriate

error message.

The correct recompilation order is any topological order of the subgraph that emanates from the

specified vertex. Topological orders are not unique, but the one that is to be used for this

program is the one generated using a depth-first search of the graph. The algorithm for

generating this topological order is shown below:

depth_first_search(vertex s)

 if s is discovered

 throw cycle detected exception

 if s is finished

 return

 mark s as discovered

 for all adjacent vertices v

 depth_first_search(v)

 mark s as finished

 push s onto the stack

This algorithm generates a reverse topological order so after it completes, the forward

topological order can be ascertained by popping the vertices off the stack. Note that an exception

is to be thrown if the graph contains a cycle. When circular dependencies exist in Java programs,

the compiler must make two passes over all the classes in the cycle, first compiling the

specifications and subsequently the remaining code. For this program, it will be sufficient to

display a message indicating that a cycle has been detected.

In addition to the main class that defines the GUI, a second class is needed to define the directed

graph. It should be a generic class allowing for a generic type for the vertex names. In this

application those names will be strings. The graph should be represented as an array list of

vertices that contain a linked list of their associated adjacency lists. The adjacency lists should be

lists of integers that represent the index rather than vertex name itself. A hash map should be

used to associate vertex names with their index in the list of vertices:

For the input file shown above the array list of linked lists of integers would be the following:

0 [[1, 2]

1 []

2 [3, 6, 7]

3 [4, 5]

4 []

5 []

6 []

7 []

8 [1]

Storing the vertex indices rather than the names simplifies the depth-first search. The hash map

would associate index 0 with ClassA, index 1 with ClassC and so on.

The directed graph class needs three public methods, one to initialize the graph each time a new

file is read in, one to and an edge to the graph and one to generate a topological order given a

starting index.

Finally checked exception classes should be defined for the cases where a cycle occurs and when

an invalid class name is specified.

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project, which includes

any code that was provided. The .zip file should contain only source code and nothing

else, which means only the .java files. If you elect to use a package the .java files

should be in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the

documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include

predefined classes. You need only include the class name for each individual

class, not the variables or methods

b. A test plan that includes test cases that you have created indicating what aspects

of the program each one is testing

c. A short paragraph on lessons learned from the project

